TCWV [kg/m2]
L]
co
o

SSM/I-MERIS TCWV - July 2007
-135 -90 -45 0 45 S0 135

-135 45 0 45 30 135

CAWA D-9: Software User Manual
Release 1.0

Brockmann Consult GmbH

Aug 07, 2017

CAWA D-9 Software User Manual

Contents
1 Introduction 3
1.1 Projectbackground 3
1.2 Purpose and Scope e e e e e e 3
1.3 References. e e e e e e e 3
1.4 Acronyms and Abbreviations L oL 5
2 The SNAP Cawa TCWYV and CTP Processing System 6
2.1 OVEIVIEW . . . o o o e e e e e e e e e e e e e e e e 6
2.2 Theoretical Background oL oL 6
2.3 Processing Environment 6
2.4 Processor COMPONENtS o v vt v vt vttt e e e e e e 6
2.4.1 The Sentinel Application Platform (SNAP) 7
2.4.2 The SNAP Graph Processing Framework 7
2.4.3 The SNAP-Python Interface (SNAPPY) 7
244 The SNAP-NetCDFModule 8
2.4.5 The IdePix Pixel Classification Module 8
24.6 The TCWV GPFProcessor. i, 9
2477 The CTP GPF Processor vttt 9
2.4.8 FORTRAN shared libraries 10
249 LookupTables 10
2.5 Processing Flow e 10
251 TCWV Processor v v v v i i e e e e e e e e e e e e e 10
252 CTPProcessor v, 11
3 The SNAP CAWA Products 13
3.1 OVEIVIEW . o o i e 13
32 InputProducts L. e e e 13
3.2.1 MERIS L1b TOA Radiance Products 13
3.2.2 MODIS MYDO021 TOA Reflectance Products 15
3.3 Intermediate Products L 16
3.3.1 ERA-Interim Products (optional) 16
3.3.2 SNAP IdePix Classification Products 16
3.4 Final Products e e e e e e e e e e e 17
341 CAWATCWYV Products i it e e et 17
342 CAWACTPProducts o . i i e e e e e e 18
4 Processing Software Installation 19
4.1 OVEeIVIEW . . . o oot e e e e e e 19
4.2 Usage Requirements o v i vttt e e e 19
4.2.1 General Requirements e 19
422 Operating SYSteM v v v v e e e e e e e e e e e e e e e e 19
423 Hardware Requirements 19
4.3 Contents of the Processing Software Bundle 19
44 Howtogetthe Software 20
4.5 Installation Steps L e e e e e 20
4.5.1 Installation of the SNAP Software 20
4.5.2 Installation of the Python Software 20
4.5.3 Python Configuration e 20
4.5.4 Installation of the CAWA Processor modules 20

CAWA D-9 Software User Manual

5 How to run the CAWA Processing Software 21
5.1 Testof the Installation 21

5.2 The Pixel Classification Step o i i 21
5.2.1 Processing Parameters e 21

53 TCWV Processing v v v v i ittt e e e e e e e e e e e 23
5.3.1 Processing Parameters e 23

54 CTPProcessing o i i i i i i e e e e 26
5.4.1 Processing Parameterso 26

5.5 DataAnalysisTools e 26
5.5.1 SNAP Desktop Application, 26

6 Annex 28

CAWA D-9 Software User Manual

Introduction

Project background

The SEOM S3 ‘advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" CAWA
project aims to the development and improvement of advanced atmospheric retrieval algorithms for the
Envisat/MERIS and Sentinel-3/OLCI mission. A sensor comprehensive and consistent 1D-Var water
vapour algorithm has been developed and applied to the MERIS, MODIS and first available OLCI mea-
surements. An innovative and consistent cloud top pressure 1D-Var procedure was defined for MERIS
and all three OLCI O2 A-band channels, which will significantly improve the retrieval accuracy. The
challenging and innovative GRASP algorithm for the retrieval of aerosols and surface properties has al-
ready shown its advantage in comparison to conventional aerosol retrieval methods. All three algorithms
will be further improved, applied to the complete MERIS dataset, to a four months MODIS global time
series and six months of OLCI data. We expect to create improved consistent datasets of water vapour,
cloud properties, namely cloud top pressure, and aerosol and surface pressure. The intention of the
CAWA team is to establish new and improved procedures to estimate atmospheric properties, which
also improve the retrieval of land and ocean properties.

Purpose and Scope

This document is the User Manual for the SNAP TCWYV and CTP processors written in Python and Java
which have been developed in the frame of the CAWA project. Its purpose is to describe in detail how to
obtain, install and operate these processors. Also, a comprehensive overview of all related data products
(input as well as intermediate and final products) is provided.

The explicit structure of the document is as follows:
* Chapter 1 is this introduction.
* Chapter 2 gives an overview of the SNAP CAWA TCWYV and CTP processing system.
* Chapter 3 describes all relevant SNAP CAWA products.
* Chapter 4 explains how to get and install the processing software.
» Chapter 5 explains how to run the processing software.

e The Annex contains various annexes.

References

1. ADVANCED CLOUDS, AEROSOLS AND WATER VAPOUR PRODUCTS FOR SENTINEL-
3/OLCI: Technical, Management and Financial Proposal. Issue 1.0, 28.03.2014.

2. Retrieval for Total Coulumn Water Vapor from MERIS/OLCI and MODIS for Land- and Ocean
Surfaces. CAWA TCWYV ATBD, available at: https://earth.esa.int/web/sppa/activities/cawa/
projects-documents

3. Retrieval of Cloud Top Pressure from MERIS and OLCI O2 A-Band Measurements. CAWA CTP
ATBD, available at: https://earth.esa.int/web/sppa/activities/cawa/projects-documents

4. The Sentinel Application Platform (SNAP) Web Site, available at: http://step.esa.int/main/
toolboxes/snap/

http://www.python.org
http://www.oracle.com/java
https://earth.esa.int/web/sppa/activities/cawa/projects-documents
https://earth.esa.int/web/sppa/activities/cawa/projects-documents
https://earth.esa.int/web/sppa/activities/cawa/projects-documents
http://step.esa.int/main/toolboxes/snap/
http://step.esa.int/main/toolboxes/snap/

CAWA D-9 Software User Manual

10.
11.
12.

13.
14.

15.
16.
17.

. Configure Python to use the SNAP-Python (snappy) interface, available at: https:

/Isenbox.atlassian.net/wiki/display/SNAP/Configure+Python+to+use+the+SNAP-Python+
%2 8snappy %29+interface

CoastColour Project Web Site, available at: http://www.coastcolour.org

. OceanColour Project Web Site, available at: http://www.esa-oceancolour-cci.org

Bourg, L. (2009): MERIS Level 2 Detailed Processing Model. ACRI-ST, Document No. PO-TN-
MEL-GS-0006, 15 July 2009.

GlobAlbedo Project Web Site, available at: http://globalbedo.org
LandCover Project Web Site, available at: http://www.esa-landcover-cci.org
GlobAlbedo ATBD ‘Pixel Classification’. Version 4.1, 26 June 2012.

ERA-Interim global atmospheric reanalysis dataset, available at: http://www.ecmwf.int/en/
research/climate-reanalysis/era-interim

European Space Agency: Meris Product Handbook, Issue 3.0, 1 August 2011.

MODIS Level 1B Product User’s Guide. For Level 1B Version 6.1.0 (Terra) and Version 6.1.1
(Aqua). MODIS Characterization Support Team, Document PUB-01-U-0202- REV C, February
27, 2009.

Climate Data Operators (CDO) Web Site, available at: https://code.zmaw.de/projects/cdo
The Python Download Web Site, available at: https://www.python.org/downloads/

SNAP Wiki: Configure Python to use the SNAP-Python (snappy) interface, available at:
https://senbox.atlassian.net/wiki/display/SNAP/Configure+Python+to+use+the+SNAP-Python+
%28snappy %29+interface

https://senbox.atlassian.net/wiki/display/SNAP/Configure+Python+to+use+the+SNAP-Python+%28snappy%29+interface
https://senbox.atlassian.net/wiki/display/SNAP/Configure+Python+to+use+the+SNAP-Python+%28snappy%29+interface
https://senbox.atlassian.net/wiki/display/SNAP/Configure+Python+to+use+the+SNAP-Python+%28snappy%29+interface
http://www.coastcolour.org
http://www.esa-oceancolour-cci.org
http://globalbedo.org
http://www.esa-landcover-cci.org
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
http://www.ecmwf.int/en/research/climate-reanalysis/era-interim
https://code.zmaw.de/projects/cdo
https://www.python.org/downloads/
https://senbox.atlassian.net/wiki/display/SNAP/Configure+Python+to+use+the+SNAP-Python+%28snappy%29+interface
https://senbox.atlassian.net/wiki/display/SNAP/Configure+Python+to+use+the+SNAP-Python+%28snappy%29+interface

CAWA D-9

Software User Manual

Acronyms and Abbreviations

Acronym | Definition

ATBD Algorithm Theoretical Basis Document

BC Brockmann Consult

BEAM Basic ERS & Envisat (A)ATSR and Meris Toolbox
Calvalus CAL/VAL and User Services

CAWA Advanced Clouds, Aerosols and WAter vapour products
CCI Climate Change Initiative

CTP Cloud Top Pressure

DFS Distributed File System

DUE Data User Element

ESA European Space Agency

GPF Graph Processing Framework

GRASP Generalized Retrieval of Aerosol and Surface Properties
JDK Java Development Kit

MERIS Medium Resolution Imaging Spectrometer
MODIS Moderate Resolution Imaging Spectroradiometer
MR Map-Reduce

NetCDF Network Common Data Form

OLCI Ocean and Land Colour Instrument

RAM Random Access Memory

SEOM Scientific Exploitation of Operational Missions
SNAP Sentinel Application Platform

SNAPPY | SNAP Python

TCWV Total Column of Water Vapour

TOA Top Of Atmosphere

UCAR University Corporation for Atmospheric Research

CAWA D-9 Software User Manual

The SNAP Cawa TCWV and CTP Processing System

Overview

The key goal of the CAWA project regarding software development, production and dissemination was
to implement the proposed algorithms for TCWV and CTP in free and easily accessible open source
toolboxes, notably and foremost ESA’s SNAP toolbox. After successful implementation, TCWV and
CTP datasets from the full MERIS archive were generated with BC’s ‘Calvalus’ Linux cluster following
the project targets. In addition, TCWV from several months of ‘OLCI-like’ input datasets (i.e. MODIS
Aqua/Terra products MODO021 and MYDO021) were generated. However, the SNAP TCWV and CTP
processors are in principle fully portable and can be run on any Linux platform. The procedure for
installation and operation is described in this chapter.

Theoretical Background

The motivation and theoretical background for the TCWV and CTP retrieval is summarized in the CAWA
project proposal [1]. The underlying algorithms are described in detail in the corresponding ATBDs for
TCWYV [2] and CTP [3], respectively.

Processing Environment

Most of the TCWYV and CTP processing in the frame of the CAWA project has been carried out on BC’s
Linux-based processing system (’Calvalus’ = CAL/VAL and User Services), based on the so-called
MapReduce (MR) programming model, combined with a distributed file system (DFS). Calvalus uses
Apache Hadoop, which is a Java open source implementation of MR and DSF. It gains its performance
from massive parallelization of tasks and the data-local execution of code, which avoids expensive net-
work traffic. Actually the Calvalus system has ~90 cores, ~ 1 PetaByte data storage volume. It is
extensively used within various projects.

However, as said, the SNAP TCWYV and CTP processors can in principle be set up and run on every
Linux based computing systems. This is described in more detail in section Processing Software Instal-
lation.

Processor Components
The SNAP TCWYV and CTP processing system consists of the following SNAP software components
and auxiliary datasets:

* snap-core module

* snap-gpf module

* snap-python module

* snap-netcdf module

* s3tbx-idepix module

* snap-cawa plug-in

* snap-cawa-io plug-in

* FORTRAN shared libraries providing high-performance utility functions used in snap-cawa

CAWA D-9 Software User Manual

* lookup tables for TCWYV and CTP retrieval

These components are described in more detail in the following subsections.

The Sentinel Application Platform (SNAP)

A common architecture for all Sentinel Toolboxes is being jointly developed by Brockmann Consult,
Array Systems Computing and C-S called the Sentinel Application Platform (SNAP).

The SNAP architecture is ideal for Earth Observation processing and analysis due to various technologi-
cal innovations as well as approved concepts from the BEAM toolbox. Most of the software components
listed above make use of various SNAP core capabilities.

A good starting point for much more detailed information is the SNAP homepage [4], and also the
comprehensive help documentation integrated in the SNAP desktop application.

The SNAP Graph Processing Framework

One of the key components in SNAP is the Graph Processing Framework (GPF) for creating user-defined
processing chains. Both CAWA TCWYV and CTP processors make use of this framework.

Within SNAP, the term data processor refers to a software module which creates an output product from
one or more input products configured by a set of processing parameters. The GPF framework was
originally developed for BEAM. Since the early days of BEAM, a number of data processors have been
developed; some of them are standard modules while others are contributed by 3rd parties. All of these
data processors have been developed using a dedicated processing framework which was already part of
the first version of BEAM.

Based on the experience collected within a number of projects, the SNAP authors have developed what is
now the SNAP Graph Processing Framework. The GPF provides all the features inherited from BEAM,
but adds a number of new ones for developers and reduces the amount of source code to write while
drastically improving its readability and maintainability.

Much more detailed information on the SNAP GPF is provided by the specific GPF help documentation
integrated in the SNAP desktop application.

The SNAP-Python Interface (SNAPPY)

A new concept provided in SNAP is the possibility to develop preocessing scripts using Python. This
is realized by a new SNAP-Python extension (SNAPPY). This component basically provides a bi-
directional communication between Python and Java since the Python extension code must be able to
call back into the Java APIs. This communication is realized by the bi-directional Python-Java bridge
‘ipy’, which comes with a number of outstanding features, such as

* Fully translates Java class hierarchies to Python
* Support of Java multi-threading
* Fast and memory-efficient support of primitive Java array parameters (e.g. NumPy arrays)

The jpy Python module is entirely written in the C programming language. The same resulting shared
library is used as a Python jpy module and also as native library for the Java library (jpy.jar). This means
that

CAWA D-9 Software User Manual

* Python programs that import the ‘jpy’ module can load Java classes, access Java class fields, and
call class constructors and methods.

 Java programs with jpy.jar on the classpath can import Python modules, access module attributes
such as class types and variables, and call any callable objects such as module-level functions,
class constructors, as well as static and instance class methods.

SNAPPY can also be used from the Graph Processing Framework so that in SNAP scientific GPF op-
erators can be developed not only in Java, but now also in Python. In CAWA, both TCWV and CTP
processors are making use of this and were written in Python, whereas the pre-processing (i.e. the IdePix
pixel classification) uses a GPF processor which was written in Java.

More detailed information on SNAPPY can be found in [5].

The SNAP-NetCDF Module

The SNAP NetCDF module provides comprehensive capabilities for NetCDF file I/O within SNAP,
based on the set of NetCDF software packages provided by UCAR Unidata. In return the SNAP NetCDF
module is used by the snap-cawa-io module which ensures a project-related generation of TCWV and
CTP products in CF-compliant NetCDF format. See section 7he SNAP CAWA Products for more detailed
description of the CAWA TCWYV and CTP products.

The IdePix Pixel Classification Module

IdePix (Identification of Pixels) is a pixel classification tool which has been developed by BC as BEAM
plugin and has been used for a variety of projects. The tool works over both land and water and supports
a variety of sensors. Among these are MERIS and MODIS, which made IdePix the most appropriate
candidate for cloud and snow identification in the CAWA project.

The IdePix tool for water pixel classification was developed in the frame of the ESA DUE project
‘CoastColour’ [6], and the ESA OceanColour CCI project [7]. The classification is mainly based on the
algorithms described in [8], chapter 5.

The IdePix tool for land pixel classification was developed in the frame of the ESA DUE project ‘Glob-
Albedo’ [9], and the ESA LandCover CCI project [10]. The classification is mainly based on the algo-
rithm used for GlobAlbedo as described in [11].

Although Idepix has been tested and successively improved within GlobAlbedo using a wide selection of
regions, also taking into account seasonal variations, some limitations and weaknesses in cloud detection
(most of them well known from other existing cloud masking approaches) could not be solved to 100%.
These are i.e.

* distinction of cloud and snow/ice is often difficult
* detection of optically very thin clouds
* possible misclassifications over very bright land areas, e.g. deserts or bright beaches

Therefore, within the frame of various projects, the IdePix algorithms are continuously further devel-
oped.

In the meantime IdePix has also been integrated in SNAP as modules for both the Sentinel 2 and the
Sentinel 3 toolboxes. The latter module (‘s3tbx-idepix’) provides the support for MERIS and MODIS
which is needed for CAWA. This module in return makes use of the SNAP Graph Processing Framework
(GPF) described above.

CAWA D-9 Software User Manual

The pixel classification with IdePix is the first processing step in CAWA, applied on the MERIS/MODIS
L1b products as preprocessing towards the generation of both TCWV and CTP (see Figure 1).

The TCWV GPF Processor

The TCWV GPF processor is the key component of the SNAP TCWYV processing chain. This processor
also makes use of the SNAP GPF framework, and also of the SNAP Python interface (SNAPPY) de-
scribed above. The processor provides the implementation of the TCWV algorithm described in detail
in [2].

CAWA TCWYV core is meant to be the core of a L1B —> L2 processor, for the retrieval of total column
water vapor. It is sensor independend, curently MERIS and MODIS look up tables are provided. It
works only for cloud free pixel

Basically, the processor is sensor-independent. However, specific lookup tables are required which are
currently provided for MERIS and MODIS. In summary, the processor needs the following inputs:

* normalized radiance (TOA radiance divided by solar constant) at the window and absorption bands
[sr-1]

* geometry

* surface (or 2m) temperature [K]

* surface pressure [hPa]

* aerosol optical thickness at the short wave window band

* prior windspeed (for ocean pixels)

* land sea discrimination (as implementations for land and sea slightly differ)
The output of the processor is TCWV [mm] and a TCWYV flag (i.e. valid data mask).

The TCWYV processing flow is illustrated in Figure Figure 1.

The CTP GPF Processor

The CTP GPF processor is the key component of the SNAP CTP processing chain. As the TCWV
processor, the CTP processor also makes use of the SNAP GPF framework, and also of the SNAP
Python interface (SNAPPY) described above. The processor provides the implementation of the CTP
algorithm described in detail in [3].

Basically, the processor is also sensor-independent. Again, specific lookup tables are required which
are currently provided for MERIS and OLCI. The processor works for all pixel, however only cloudy
pixel deliver sensible results. The cloud optical thickness does not account for optical effective radius
(missing SWIR Bands), thus it will not be accurate in particular close to cloud/rain bows.

The underlying algorithm has been designed in two versions:

* ‘cloud_core’. A slim and faster version being used for MERIS, only retrieving cloud top pressure
and cloud optical thickness.

* ‘cloud_complete_core’, the full version, additionally retrieving cloud profile information. This
version had been foreseen for OLCI, but in the end was not realized as GPF processor, as the
optional ‘OLCI" workpackage had been descoped from the CAWA project.

In summary, the processor needs the following inputs:

10

CAWA D-9 Software User Manual

* normalized radiance (TOA radiance divided by solar constant) [sr-1] at the window and absorption
bands (Band 10 and 11 in case of MERIS. The MERIS band 11 is corrected for straylight using
coefficients which are provided with the processor module.)

* surface pressure [hPa]

* surface albedo around 750 nm. (An examplarily climatology is provided with the processor mod-
ule.)

* the precise deviation of the central wavelength from the nominal
The output of the processor is CTP [hPa] and a CTP flag (i.e. valid data mask).

The CTP processing flow is illustrated in Figure Figure 2.

FORTRAN shared libraries

The core algorithms for both TCWV and CTP processors are implemented in Python, which is conve-
nient and popular. However, compared to others, it is usually not the fastest programming languages.
Therefore, for the most computation intensive parts of the code as well as for frequently used utility
functions, equivalent high-performance FORTRAN modules have been developed. These modules were
pre-compiled, and appropriate shared libraries for Linux are provided to the processing software pack-
age.

Lookup Tables

Various lookup tables are used for both TCWV and CTP retrieval, as described in more detail in [2] and
[3]. These lookup table are also provided to the processing software package.

Processing Flow

Although the TCWYV and CTP processors are completely independent of each other, their individual
processing flow is very similar as shown and explained below.

TCWYV Processor

The overall processing flow of the SNAP TCWYV processor is shown in Figure 1.

As mentioned, L1b products from MERIS or MODIS are used as input. These products are pre-
processed with the IdePix pixel classification module. Idepix provides a classification flag and the
reflectance bands (converted from radiances in case of MERIS) needed for the TCWYV retrieval. Further
optional input (per pixel) are prior values for temperature, pressure, wind speed, and an initial TCWV
guess. Ideally, these priors are taken from an external data source to provide values of good quality.
For the CAWA TCWYV processing on Calvalus, these data were taken from ERA-Interim [12] products
which were interpolated and collocated onto the initial L1b/IdePix product grid. If no priors are pro-
vided, the processor will use reasonable constant values, but this is not recommended for good TCWV
retrievals.

The IdePix products (optionally including the prior bands) are the input for the TCW'V processing step,
which provides the final TCWYV products (TCWYV + flag band).

11

CAWA D-9 Software User Manual

ERA-Interim
Products

TCWYV Processing chain:

—l—J pJ w sJ
TCWY,

prior

- Classification flag
-Reflectances, TPGs

Radiances TPGs - Priors: T, p, ws, TOWV ;. :
Lib . IdePix : Interpolation
d IdePIX d IIIIIIE ---------

Products e Collocation

/ TCWYV Processor /

Products

-TCWV
-Flags

Figure 1: Processing flow of the SNAP TCWYV processor.

CTP Processor

The overall processing flow of the SNAP CTP processor is shown in Figure 2.

The setup and structure of the CTP processor is very similar to the TCWYV processor. Again, the L1b
products are pre-processed with the IdePix pixel classification module. A surface albedo climatology
value (white sky albedo) is added to the IdePix products, using an internal climatology product (20-day
averages) which is included in the processor module. The IdePix products are the input for the CTP
processing step, which provides the final CTP products (CTP + flag band).

12

CAWA D-9 Software User Manual

CTP Processing chain: Surface Albedo

White S .
Nblesoky Climatology

- Classificationflag
-Radiances, TPGs
- White Sky Albedo

Radiances, TPGs

Lab IdePix I Interpolation
IdePix
Products Product

Collocation

/ CTP Processor /

Figure 2: Processing flow of the SNAP CTP processor.

13

CAWA D-9 Software User Manual

The SNAP CAWA Products

Overview

This section will give an overview of all input, intermediate and final products used and generated by
the SNAP GPF TCWYV and CTP processors

Input Products
MERIS L1b TOA Radiance Products
From the MERIS full mission (2002-2012), L1b TOA radiance reduced resolution data has been used as

input data. Table Table 1 to Table 4 give an overview of MERIS L1b bands, tie point grids and L1b flag
coding, respectively. A more detailed description of the MERIS standard L1b product is given in [13].

Table 1: MERIS bands in L1b product

Name in product Unit Type | Description
radiance_<n>; n=1,..,15 | mW/(m”2*sr*nm) | float32 | TOA radiance in band <n>
11_flags dl (flag band) uint8 Level 1b flags
detector_index dl intl6 Detector index

Table 2: MERIS instrument channels.

Channel | Wavelength | Bandwidth
1 412.5 10
2 442.5 10

3 490 10
4 510 10
5 560 10
6 620 10
7 665 10

8 681 7.5
9 709 10
10 753 7.5
11 761 3.75
12 778 15
13 865 20
14 885 10
15 900 10

14

CAWA D-9 Software User Manual

Table 3: MERIS tie point grids in L1b product.

Name in product | Unit | Type | Description

latitude deg | float32 | Latitude of the tie points

longitude deg | float32 | Longitude of the tie points

dem_alt m float32 | Digital elevation model altitude
dem_rough m float32 | Digital elevation model roughness

lat_corr deg | float32 | Digital elevation model latitude corrections
lon_corr deg | float32 | Digital elevation model longitude corrections
sun_zenith deg | float32 | Sun zenith angle

sun_azimuth deg | float32 | Sun azimuth angle

view_zenith deg | float32 | View zenith angle

view_azimuth deg | float32 | View azimuth angle

zonal_wind m/s float32 | Zonal wind

merid_wind m/s float32 | Meridional wind

atm_press hPa | float32 | Mean sea level pressure

ozone DU | float32 | Total ozone

rel_hum % float32 | Relative humidity

Table 4: MERIS L1b flag coding.

Bit | Flag Description

0 Cosmetic Pixel is cosmetic

1 Duplicated Pixel has been duplicated
2 Glint_Risk Pixel has glint risk

3 Suspect Pixel is suspect

4 Land_Ocean | Pixel is over land,

5 Bright Pixel is bright

6 Coastline Pixel is part of a coastline

In the CAWA TCWY processing, the following bands and tie point grids from the MERIS L1b products
are used:

 radiance_13 (converted to TOA reflectance)
« radiance_14 (converted to TOA reflectance)
 radiance_15 (converted to TOA reflectance)
e sun_zenith

* sun_azimuth

e view_zenith

e view_azimuth

In the CAWA CTP processing, the following bands and tie point grids from the MERIS L1b products
are used:

e radiance_10
e radiance_11

¢ detector_index

15

CAWA D-9

Software User Manual

¢ sun_zenith

e sun_azimuth
e view_zenith
e view_azimuth

e dem_alt

MODIS MYDO021 TOA Reflectance Products

For the ‘OLCI-like’ TCWYV processing in CAWA, MODIS Aqua L1b data from MYD021KM products
were used. These products contain calibrated Earth view TOA reflectance data at 1km resolution, in-
cluding the 250m and 500m resolution bands aggregated to 1km resolution. The datasets are described
in detail in the MODIS Level 1B Product User’s Guide [14]. Table 6 gives an overview of the reflective
and emissive bands in the MYDO021KM product.

Table 5: MODIS Aqua bands in L1b MYDO021 product.

Taken from [14].

Cryptic name Resolution | Spectral bands
EV_250_RefSB 250m 1,2
EV_500_RefSB 500m 3-7
EV_1KM_RefSB 1km 8-19, 26
EV_1KM_Emissive | 1km 20-25, 27-36

Here, “RefSB” stands for “Reflective Solar Band” and “Emissive” stands for thermal emissive bands.

Table 6 gives an overview of the tie piont grids available in the MYDO021KM product.

Table 6: MODIS tie point grids in L1b MYDO021 product.

Name in Unit | Type | Description

product

latitude deg | float32 | Latitude of the tie points (WGS-84), Greenwich origin,
positive N

longitude deg | float32 | Longitude of the tie points (WGS-84), Greenwich origin,
positive E

Height m float32 | Height

Range m float32 | Range

SolarZenith deg | float32 | Sun zenith angle

SolarAzimuth deg | float32 | Sun azimuth angle

SensorZenith deg | float32 | View zenith angle

SensorAzimuth deg | float32 | View azimuth angle

In the CAWA TCWYV processing, the following bands and tie point grids from these products are used:
* EV_250_Aggrikm_RefSB_2
* EV_250_Aggrlkm_RefSB_5

16

CAWA D-9 Software User Manual

EV_1KM_RefSB_17
EV_1KM_RefSB_18
EV_1KM_RefSB_19

SolarZenith
¢ SolarAzimuth
¢ SensorZenith

¢ SensorAzimuth

Intermediate Products
ERA-Interim Products (optional)

The CAWA TCWYV algorithm uses the following prior variables:
* temperature at 2m
* mean sea level pressure
* TCWYV initial guess
* windspeed at 10m, u-component
* windspeed at 10m, v-component

As said, the way of providing these prior variables to the algorithms is somewhat arbitrary. In the CAWA
TCWYV processing on the BC Calvalus cluster, the variables were taken from available ERA-Interim re-
analysis datasets. The ERA-Interim data extraction and preparation was done with specific scripts which
were developed in the frame of other projects and which are running on Calvalus, making use of the col-
lection of Climate Data Operators (CDO) developed at Max-Planck-Institute for Meteorology Hamburg
[15]. All these components are not part of the CAWA software package. However, the content of the
ERA-Interim products being resampled and collocated with the MERIS/MODIS L1b input products is
given in Table Table 7.

Table 7: Bands in ERA-Interim product

Name in product | Unit | Type | Description

t2m K float32 | temperature at 2m

msl hPa float32 | mean sea level pressure

tewv kgm-2 | float32 | TCWYV initial guess

ulo m/s float32 | windspeed 10m, u-component
v10 m/s float32 | windspeed 10m, v-component
latitude deg float32 | latitude

longitude deg float32 | longitude

SNAP IdePix Classification Products

The IdePix classification product is the result of the pixel classification performed on the MERIS or
MODIS L1b products for both TCWV and CTP processing. In return, the IdePix product is used as

17

CAWA D-9 Software User Manual

input for the TCWV and CTP processing. In fact it is an ‘extended’ classification product containing the
following information:

* radiance/reflectance bands needed for TCWV/CTP retrieval
* pixel classification flag band

e prior variables in case of TCWYV processing(for CAWA, obtained from collocation with ERA-
Interim product described above)

* L1b flags and tie point grids

The IdePix classification flag coding is given in Table Table 8. (Some of the flags may not be computed
under certain conditions. E.g., a glint risk is not computed for land pixels.)

Table 8: IdePix classification flag coding.

Bit | Flag Description

0 INVALID Pixel is invalid

1 CLOUD Pixel is either ‘cloud sure’ or ‘cloud ambiguous’

2 CLOUD_AMBIGUOUS | Semi-transparent clouds, or cloud detection is uncertain
3 CLOUD_SURE Fully opaque clouds with full confidence of their detection
4 CLOUD_BUFFER A buffer of N pixels (user option) around a cloud

5 CLOUD_SHADOW Pixel is affected by a cloud shadow

6 SNOW_ICE Snow or ice pixel

7 GLINTRISK Pixel has glint risk (over ocean)

8 COASTLINE Pixel is part of a coastline

9 LAND Land pixel

The IdePix products are generated in NetCDF4 format. An example of the NetCDF header of an Idepix
product is given in the Annex.

Final Products

CAWA TCWYV Products
The CAWA TCWYV final products are generated in CF-compliant NetCDF4 format. They just contain

the TCWYV, a simple TCWYV flag and the pixel classification flag copied from the IdePix product (Table
9). An example of the NetCDF header of a TCWV product is given in the Annex.

Table 9: Bands in final CAWA TCWYV product

Name in product | Unit | Type | Description

tewv mm | float32 | Total column of water vapour
tcwv_flags dl uint8 TCWYV flags
pixel_classif_flags | dl intl6 Pixel classification flags

18

CAWA D-9 Software User Manual

CAWA CTP Products
The CAWA CTP final products are generated in CF-compliant NetCDF4 format. They just contain the

CTP, a simple CTP flag and the pixel classification flag copied from the IdePix product (Table 10). An
example of the NetCDF header of a CTP product is given in the Annex.

Table 10: Bands in final CAWA CTP product

Name in product | Unit | Type | Description

ctp mm | float32 | Cloud top pressure

ctp _flags dl uint8 CTP flags
pixel_classif_flags | dl intl6 Pixel classification flags

19

CAWA D-9 Software User Manual

Processing Software Installation

Overview

This chapter describes the overall software installation procedure (processing modules and auxiliary
data sets) as well as the system requirements (hardware and software).

Usage Requirements
General Requirements

In general, the CAWA processors require:
* a 1.8 version of the Java Development Kit (JDK)
* Python v2.7
* SNAP latest release (currently v5.0.0), including IdePix

Operating System

The software has been developed and tested on Virtual machines based on Linux Ubuntu, which is also
used on the Calvalus system. Also, the required FORTRAN shared libraries included in the software
bundle were pre-compiled in a Linux environment. Therefore, the CAWA software can be run on Linux
systems only.

Hardware Requirements

The CAWA TCWYV and CTP Processing System is a complex piece of software which is based on mas-
sive numerical operations and lookup table access. Therefore the system requires sufficiently powerful
and sufficiently dimensioned hardware for reliable processing. The recommended key parameters for
the hardware are:

e Multi-kernel CPU (8 or more), >3 GHz
e RAM 8GB or more

* sufficient disk space according to sizes of products

Contents of the Processing Software Bundle
The SNAP TCWYV and CTP processing software bundle contains the following components in two
separate jar files:

* snap-cawa plug-in (Python files, lookup tables, FORTRAN shared libraries, GPF configuration
files)

* snap-cawa-io plug-in
The current processor version is v1.2, therefore we have the two files:

* snap-cawa-1.2.jar

20

CAWA D-9 Software User Manual

* snap-cawa-io-1.2.jar

How to get the Software

The SNAP TCWYV and CTP processing software bundle can be obtained from the CAWA ftp site hosted
at BC with the following configuration:

* SFTP, Port 22

¢ ftp.brockmann-consult.de
* username: cawa

* password: 7t86.8K9i7z

* subdirectory: cawa_processor

Installation Steps

Installation of the SNAP Software

Download SNAP (Unix version) from the SNAP web site [4] and follow the information and instructions
for installation given there.

Installation of the Python Software

Download Python v2.7 from the Python web site [16] and follow the information and instructions for
installation given there.

Python Configuration

Once downloaded and installed, Python needs to be configured to use the SNAP-Python (snappy) inter-
face. Instructions for this step are given in detail in the SNAP Wiki [17].

Installation of the CAWA Processor modules

The SNAP TCWYV and CTP processor modules need to be installed as follows:
* download the snap-cawa-1.2.jar and snap-cawa-io-1.2.jar into an arbitrary directory
* copy the file snap-cawa-io-1.2.jar to $SNAP_INSTALL_DIR/snap/modules
* unpack the snap-cawa-1.2.jar into an arbitrary snap-cawa directory, e.g. /home/snap-cawa
* now all required resources should be in another subdirectory /home/snap-cawa/resources_bundle
* To link the snap-cawa directory to SNAP, edit the file SSNAP_INSTALL_DIR/etc/snap.properties
* In this file, at the end of the file, add the line: snap.pythonExtraPaths = snap-cawa directory

e.g. snap.pythonExtraPaths = /home/snap-cawa

21

CAWA D-9 Software User Manual

How to run the CAWA Processing Software

Test of the Installation

If all installation steps described in Processing Software Installation were finished successfully, the
CAWA TCWYV and CTP GPF processors are now ready to run. First, test their availability with:

$SNAP_INSTALL_DIR/bin/gpt -h

The three operators
* CawaTCWV.Meris
* CawaTCWV.Modis
* CawaCTP.Meris

should now appear in the listing of available SNAP operators, together with a short description.

The Pixel Classification Step
The pixel classification with IdePix is applied on the L1b input products. The operators for MERIS and
MODIS
* Idepix.Meris
* Idepix.Modis
should also appear in the listing of available SNAP operators, together with a short description.

A more detailed information on the distinct operator can be obtained with

$SNAP_INSTALL_DIR/bin/gpt -h <operator-name>

e.g.

$SNAP_INSTALL_DIR/bin/gpt -h Idepix.Modis

(see Figure 3).

Processing Parameters
The gpt command given above shows the possible IdePix processing parameters. To ensure a correct

workflow towards the TCWYV and CTP processing, the following IdePix processing parameters must be
set as they deviate from the default (Table 11):

Table 11: Processing parameters deviating from defaults for CAWA IdePix classification step.

Operator Parameter Value

Idepix.Meris (for TCWYV) | refiBandsToCopy | reflectance_13,reflectance_14,reflectance_15
Idepix.Meris (for CTP) none
Idepix.Modis (for TCWYV) | outputCawaRefSB | true

22

CAWA D-9 Software User Manual

Figure 3: GPF information for Idepix MODIS operator..

23

CAWA D-9 Software User Manual

Applying these processing parameters, the calls for Idepix.Meris (TCWYV, CTP) and Idepix.Modis
(TCWYV) would look like:

IdePix MERIS TCWV:

gpt Idepix.Meris -SsourceProduct=<path-to-MERIS-Llb-product>
-PreflBandsToCopy=reflectance_13,reflectance_14,reflectance_15
—f NetCDF4-BEAM -t <path-to-idepix-meris-for-tcwv-product>

IdePix MERIS CTP:

gpt Idepix.Meris -SsourceProduct=<path-to-MERIS-Llb-product>
—-f NetCDF4-BEAM -t <path-to-idepix-meris-for-ctp-product>

IdePix MODIS TCWV:

gpt Idepix.Modis -SsourceProduct=<path-to-MERIS-Llb-product>
—-PreflBandsToCopy=reflectance_13, reflectance_14,reflectance_15
—f NetCDF4-BEAM -t <path-to-idepix-meris—-for-tcwv-product>

TCWYV Processing

The TCWYV processing is applied on the ‘extended’ IdePix products as described in 7he SNAP CAWA
Products. The gpt command in Figure 5 and Figure 5 shows the possible TCWYV processing parameters
for MERIS and MODIS, respectively.

Processing Parameters

The operators for MERIS and MODIS
e CawaTCWYV.Meris
e CawaTCWYV.Modis

do not require any non-default parameters and are invoked via the SNAP gpt tool like:

<operator-name> -SsourceProduct=<path-to-IdePix-product> —-f NetCDF4-CAWA -t
<path-to-target-product>

However, as discussed in The SNAP CAWA Products, it is strongly recommended to use IdePix ‘ex-
tended’ products containing ERA-Interim data which provides more realistic prior variables. If these
are not available, the processor will use processor parameters for prior 2m temperature, mean sea level
pressure and AOT. They can be explicitly provided by the user, so a TCWYV processor call may look
like:

CawaTCWV.Meris —-SsourceProduct=<path-to-IdePix—-product> -Ptemperature=285.0
—Ppressure=990.0 -Paot_13=0.25
—f NetCDF4-CAWA -t <path-to-target-product>

However, these values would be constant for all pixels of the given scene, so the resulting TCWV
retrieval may be poor.

24

CAWA D-9 Software User Manual

Figure 4: GPF information for TCWV MERIS operator.

25

CAWA D-9 Software User Manual

Figure 5: GPF information for TCWV MODIS operator.

26

CAWA D-9 Software User Manual

CTP Processing

The CTP MERIS processing is applied on the ‘extended’ IdePix products as described in The SNAP
CAWA Products. The gpt command in Figure 6 shows the possible CTP MERIS processing options.

globalbedofgamaster: ~/od/cawa/snap-cawa-1.2 & gpt -h CawaCIP.Meris
TUzage:
gpt CawaCIP.Meris [ocpticons]

Description:
Operator for MERTS cloud top pressure (CTP) retriewval as developed in CAWA project.

Socurce Optiona:
-Saource=<file> Sets source "source' to <filepath>.
This i3 a mandatory socurce.

Graph XML Format:
<graph id="scmeGraphIld":>
<version>l.0</wversion>
<node id="someNodeId™:>
<operator>CawalCTP.Meris</operator>
<sgurces>
<source>$ [sourcel</source>
</3ources>
<parameters/>
</node>
</graph>

Figure 6: GPF information for TCWV MERIS operator.

Processing Parameters

The operators for MERIS
* CawaCTP.Meris

does not require any non-default parameters and is invoked via the SNAP gpt tool like:

CawaCTP .Meris —-SsourceProduct=<path-to-IdePix-product> —-f NetCDF4-CAWA
-t <path-to-target-product>

Data Analysis Tools
SNAP Desktop Application

The TCWV and CTP products generated within the CAWA project are provided in CFcompliant
NetCDF-4/HDF5 format, which is supported by a variety of tools for further scientific analysis and
processing. One of the important tools are the BEAM toolbox and its successor SNAP.

BEAM is the Basic ERS & Envisat (A)ATSR and MERIS Toolbox and is a collection of executable
tools and an application programming interface (API) which had been developed to facilitate the use,
viewing and processing of data of various sensors. However, it is more recommended to use the latest
version of the SNAP toolboxes which do not only provide most of all existing BEAM functionalities

27

CAWA D-9 Software User Manual

and product support, but also various new features as well as support for the new sensors onboard the
Sentinel-x satellites. The SNAP desktop application is directly available after having installed SNAP as
described in Processing Software Installation.

=» SNAP | Sentinels Application Platform

Done loading modules:

Eesa
eo

scientific axploitatian
of aperationa] misslens

Figure 7: The SNAP desktop application splash screen.

28

CAWA D-9 Software User Manual

Annex

Example of IdePix NetCDF4 product header:

netcdf L2_of_MER_RR___1PNACR20080621_055731_000001512069_00363_32982_0000 {
dimensions:

y = 865 ;

x = 1121 ;

tp_y = 55 ;

tp_x = 71 ;

variables:
short cloud_classif_flags(y, x) ;
cloud_classif_flags:coordinates = "lat lon"
cloud_classif_flags:flag_meanings = "F_INVALID F_CLOUD

F_CLOUD_AMBIGUOUS F_CLOUD_SURE F_CLOUD_BUFFER F_CLOUD_SHADOW
F_SNOW_ICE F_GLINTRISK F_COASTLINE F_LAND" ;
cloud_classif_flags:flag_masks = 1ls, 2s, 4s, 8s, l6s, 32s, 64s,
128s, 256s, 512s ;
cloud_classif_flags:flag_coding name = "cloud_classif flags" ;
cloud_classif_flags:flag _descriptions = "Invalid pixels\tPixels
which are either cloud_sure or cloud_ambiguous\tSemi transparent
clouds, or clouds where the detection level is uncertain\tFully
opaque clouds with full confidence of their detection\tA buffer
of n pixels around a cloud. n is a user supplied parameter. Applied
to pixels masked as \'cloud\'\tPixels is affect by a cloud
shadow\tSnow/ice pixels\tPixels with glint risk\tPixels at a
coastline\tLand pixels" ;
cloud_classif_flags:long_name = ""

short radiance_10(y, x) ;

radiance_10:1long_name = "TOA radiance band 10" ;
radiance_10:units = "mW/ (m"2+sr+nm)"
radiance_10:_Unsigned = "true"
radiance_10:scale_factor = 0.00866463407874107 ;
radiance_10:coordinates = "lat lon"

radiance_10:bandwidth = 7.495f ;
radiance_10:wavelength = 753.371f ;

radiance_10:valid_pixel_expression = "!11_flags.INVALID" ;
radiance_10:solar_flux = 1227.051f ;
radiance_10:spectral_band_index = 9.f ;

short radiance_11(y, x) ;
radiance_11l:1long_name = "TOA radiance band 11"
radiance_1l1l:units = "mW/ (m"2+xsr*nm)" ;
radiance_11:_Unsigned = "true"
radiance_1ll:scale_factor = 0.00887294951826334 ;
radiance_1l1l:coordinates = "lat lon" ;

radiance_1l1:bandwidth = 3.744f ;
radiance_ll:wavelength = 761.5081f ;

radiance_1l1l:valid_pixel_expression = "!11_flags.INVALID" ;
radiance_1ll:solar_flux = 1215.942f ;
radiance_1l1l:spectral_band_index = 10.f ;
short detector_index(y, x) ;
detector_index:coordinates = "lat lon"
detector_index:long_name = "Detector index" ;
byte 11_flags(y, x) ;
11_flags:_Unsigned = "true"
11_flags:coordinates = "lat lon"
11_flags:flag _meanings = "COSMETIC DUPLICATED GLINT_RISK SUSPECT

29

CAWA D-9 Software User Manual

LAND_OCEAN BRIGHT COASTLINE INVALID"

11_flags:flag_masks 1b, 2b, 4b, 8b, 16b, 32b, 64b, -128b ;
11_flags:flag_coding_name = "11_ flags" ;
11_flags:flag_descriptions = "Pixel is cosmetic\tPixel has been

duplicated (filled in)\tPixel has glint risk\tPixel is

suspect\tPixel is over land, not ocean\tPixel is bright\tPixel

is part of acoastline\tPixel is invalid"

11_flags:long_name = "Level 1lb classification and quality flags"
float latitude (tp_y, tp_x) ;

latitude

latitude:

0.5f
subsampling_x

:offset_y

16.f ;

latitude:subsampling vy = 16.f ;
latitude:offset_x = 0.5f ;

float longitude (tp_y, tp_x) ;
longitude:offset_y = 0.5f ;
longitude:subsampling_x = 16.f ;
longitude:subsampling_y = 16.f ;

longitude:offset_x = 0.5f ;
float dem_alt (tp_y, tp_x) ;

dem_alt:
dem_alt:
dem_alt:
dem_alt:

offset_y 0.5f
subsampling_x

- ’
1
1

4

subsampling_y
offset_x 0.5f

6.f
6.f

float dem_rough(tp_y, tp_x) ;
dem_rough:offset_y 0.5f
dem_rough:subsampling_x =
dem_rough:subsampling_y
dem_rough:offset_x 0.5f
float lat_corr(tp_y, tp_x)

16.
16.

4

lat_corr

lat_corr:
lat_corr:
lat_corr:

float lon_co
lon_corr

lon_corr:
lon_corr:

lon_corr

float sun_zenith (tp_y,
sun_zenith:
sun_zenith:
sun_zenith:
sun_zenith:
float sun_azimuth (tp_y,
sun_azimuth:

0.5f
subsampling_x

:offset_y

subsampling_y
offset_x 0.5f
rr (tp_y, tp_x) ;
:offset_y 0.5f
subsampling_x
subsampling_y
coffset_x 0.5f

tp_x)

0.5

offset_y =
subsampling_y
offset_x 0.5
tp_x)
offset_y 0.

subsampling x =

16.
16.

14

16.f
16.f
£
16.
16.

7

[

[,

£

5f

sun_azimuth:
sun_azimuth:
sun_azimuth:

float view_zenith (tp_y,

view_zenith:
view_zenith:

subsampling_x =
subsampling_y
offset_x 0.5f
tp_x) ;
offset_y 0.5f
subsampling x =

16.
16.

16.

view_zenith: 16.

subsampling_y
offset_x 0.5f
float view_azimuth (tp_y, tp_x) ;
view_azimuth:offset_y 0.5f
view_azimuth:subsampling_ x

view_zenith:

l6.f
16.£

4

view_azimuth:subsampling y ;

30

CAWA D-9

Software User Manual

view_azimuth:offset_x = 0.5f ;
float zonal_wind(tp_y, tp_x) ;
zonal _wind:offset_y = 0.5f ;

zonal_wind:subsampling x = 16.f ;
zonal_wind:subsampling_y = 16.f ;
zonal_wind:offset_x = 0.5f ;

float merid_wind(tp_y, tp_x) ;
merid_wind:offset_y = 0.5f ;

merid_wind:subsampling_x = 16.f ;
merid_wind:subsampling_y = 16.f ;
merid_wind:offset_x = 0.5f ;

float atm_press(tp_y, tp_x) ;
atm_press:offset_y = 0.5f ;
atm_press:subsampling x = 16.f ;
atm_press:subsampling y = 16.f ;
atm_press:offset_x = 0.5f ;

float ozone(tp_y, tp_x) ;
ozone:offset_y = 0.5f ;

ozone:subsampling x = 16.f ;
ozone:subsampling y = 16.f ;
ozone:offset_x = 0.5f ;

float rel_hum(tp_y, tp_x) ;
rel_hum:offset_y = 0.5f ;
rel_hum:subsampling_x = 16.f ;
rel_hum:subsampling_y 16.£ ;
rel_hum:offset_x = 0.5f ;

float lat(y, x) ;
lat:long_name

"latitude coordinate" ;

lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;

float lon(y, x) ;
lon:long_name = "longitude coordinate" ;
lon:standard_name = "longitude"
lon:units = "degrees_east"

byte cawa_invalid_mask ;
cawa_invalid_mask:expression = "cloud_classif flags.F_INVALID"
cawa_invalid_mask:color = 178, 0, 0, 255 ;
cawa_invalid_mask:transparency = 0.5 ;
cawa_invalid_mask:title = "Invalid pixels"

byte cawa_cloud_mask ;
cawa_cloud_mask:expression = "cloud_classif_ flags.F_CLOUD"
cawa_cloud_mask:color = 255, 0, 255, 255 ;
cawa_cloud_mask:transparency = 0.5 ;
cawa_cloud_mask:title = "Pixels which are either cloud_sure or

cloud_ambiguous" ;

byte cawa_cloud_ambiguous_mask ;
cawa_cloud_ambiguous_mask:expression =
"cloud_classif_flags.F_CLOUD_AMBIGUOUS" ;

cawa_cloud_ambiguous_mask:color = 255, 255, 0, 255 ;
cawa_cloud_ambiguous_mask:transparency = 0.5 ;
cawa_cloud_ambiguous_mask:title = "Semi transparent clouds,

clouds where the detection level is uncertain"
byte cawa_cloud_sure_mask ;
cawa_cloud_sure_mask:expression =
"cloud_classif_flags.F_CLOUD_SURE"
cawa_cloud_sure_mask:color = 255, 0, 0, 255 ;
cawa_cloud_sure_mask:transparency = 0.5 ;

or

31

CAWA D-9 Software User Manual

cawa_cloud_sure_mask:title = "Fully opague clouds with full
confidence of their detection" ;

byte cawa_cloud_buffer_mask ;
cawa_cloud_buffer_mask:expression =
"cloud_classif_flags.F_CLOUD_BUFFER"
cawa_cloud_buffer_mask:color = 255, 200, 0, 255 ;
cawa_cloud_buffer_mask:transparency = 0.5 ;
cawa_cloud_buffer_mask:title = "A buffer of n pixels around a
cloud. n is a user supplied parameter.
Applied to pixels masked as \'cloud\'" ;

byte cawa_cloud_shadow_mask ;
cawa_cloud_shadow_mask:expression =
"cloud_classif_flags.F_CLOUD_SHADOW"
cawa_cloud_shadow_mask:color = 178, 0, 0, 255 ;
cawa_cloud_shadow_mask:transparency = 0.5 ;
cawa_cloud_shadow_mask:title =
"Pixels is affect by a cloud shadow" ;

byte cawa_snow_ice_mask ;
cawa_snow_ice_mask:expression = "cloud_classif flags.F_SNOW_ICE" ;
cawa_snow_ice_mask:color = 0, 255, 255, 255 ;
cawa_snow_ice_mask:transparency = 0.5 ;
cawa_snow_ice_mask:title = "Snow/ice pixels" ;

byte cawa_glint_risk_mask ;
cawa_glint_risk_mask:expression =
"cloud_classif_ flags.F_GLINTRISK"
cawa_glint_risk_mask:color = 255, 175, 175, 255 ;
cawa_glint_risk_mask:transparency = 0.5 ;
cawa_glint_risk _mask:title = "Pixels with glint risk" ;

byte cawa_coastline_mask ;
cawa_coastline_mask:expression = "cloud_ _classif flags.F_COASTLINE"

cawa_coastline_mask:color = 0, 178, 0, 255 ;
cawa_coastline_mask:transparency = 0.5 ;
cawa_coastline _mask:title = "Pixels at a coastline"
byte cawa_land_mask ;
cawa_land_mask:expression = "cloud_classif_flags.F_LAND"
cawa_land_mask:color = 0, 255, 0, 255 ;
cawa_land_mask:transparency = 0.5 ;
cawa_land_mask:title = "Land pixels"
byte coastline_mask ;
coastline_mask:expression = "11 flags.COASTLINE"
coastline_mask:color = 0, 255, 0, 255 ;
coastline_mask:transparency = 0. ;
coastline_mask:title = "Pixel is part of a coastline" ;
byte land_mask ;
land_mask:expression = "11 flags.LAND_ OCEAN"
land_mask:color = 51, 153, 0, 255 ;
land_mask:transparency = 0.75 ;
land_mask:title = "Pixel is over land, not ocean"
byte water_mask ;
water_mask:expression = "NOT 11 flags.LAND_ OCEAN" ;
water_mask:color = 153, 153, 255, 255 ;
water_mask:transparency = 0.75 ;
water_mask:title = "Not Pixel is over land, not ocean"
byte cosmetic_mask ;
cosmetic_mask:expression = "11 flags.COSMETIC"
cosmetic_mask:color = 204, 153, 255, 255 ;

32

CAWA D-9 Software User Manual

cosmetic_mask:transparency = 0.5 ;
cosmetic_mask:title = "Pixel 1s cosmetic" ;
byte duplicated_mask ;
duplicated_mask:expression = "11_flags.DUPLICATED" ;
duplicated_mask:color = 255, 200, 0, 255 ;
duplicated_mask:transparency = 0.5 ;
duplicated_mask:title = "Pixel has been duplicated (filled in)"
byte glint_risk_mask ;
glint_risk_mask:expression = "11_flags.GLINT_RISK"
glint_risk_mask:color = 255, 0, 255, 255 ;
glint_risk_mask:transparency = 0.5 ;
glint_risk_mask:title = "Pixel has glint risk"
byte suspect_mask ;
suspect_mask:expression = "11_flags.SUSPECT" ;
suspect_mask:color = 204, 102, 255, 255 ;
suspect_mask:transparency = 0.5 ;
suspect_mask:title = "Pixel is suspect" ;
byte bright_mask ;
bright_mask:expression = "11_flags.BRIGHT"
bright_mask:color = 255, 255, 0, 255 ;
bright_mask:transparency = 0.5 ;
bright_mask:title = "Pixel is bright"
byte invalid_mask ;
invalid_mask:expression = "11_flags.INVALID" ;
invalid_mask:color = 255, 0, 0, 255 ;
invalid_mask:transparency = 0. ;
invalid_mask:title = "Pixel is invalid" ;

// global attributes:

:Conventions = "CF-1.4" ;

:TileSize = "16:1121"

:product_type = "mergedClassif" ;
:metadata_profile = "beam"

:metadata_version = "0.5"

rauto_grouping = "radiance:rho_toa"
:tiepoint_coordinates = "longitude latitude" ;
:start_date = "21-JUN-2008 05:57:31.155941" ;
:stop_date = "21-JUN-2008 06:00:03.209572"

4

Example of CAWA TCWYV product header:

netcdf L2_of_ L2 of MER_RR___1PNUPA20060102_141100_000026182043_00497_20090_

7596 {
dimensions:

y = 14881 ;

x = 1121 ;

tp_y = 931 ;

tp_x = 71 ;
variables:

float tcwv(y, x) ;

"

tcwv:units = "mm"

14
tcwv:_FillValue = -999.f ;
tcwv:long_name = "Total column of water vapour" ;
byte tcwv_flags(y, x) ;
tcwv_flags:units = "1" ;
tcwv_flags:long_name = "TCWV flags band"

33

CAWA D-9 Software User Manual

short cloud_classif_flags(y, x) ;

cloud_classif_flags:units = "1"
cloud_classif_flags:flag_meanings = "F_INVALID F_CLOUD
F_CLOUD_AMBIGUOUS F_CLOUD_SURE F_CLOUD_BUFFER F_CLOUD_SHADOW
F_SNOW_ICE F_GLINTRISK F_COASTLINE F_LAND" ;
cloud_classif_flags:flag_masks = 1s, 2s, 4s, 8s, l6s, 32s, 64s,
128s, 256s, 512s ;

cloud_classif_flags:flag_coding _name = "cloud_classif_flags" ;
cloud_classif_flags:flag _descriptions = "Invalid pixels\tPixels
which are either cloud_sure or cloud_ambiguous\tSemi transparent
clouds, or clouds where the detection level is uncertain\tFully
opaque clouds with full confidence of their detection\tA buffer
of n pixels around a cloud. n is a user supplied parameter. Applied
to pixels masked as \'cloud\'\tPixels is affect by a cloud
shadow\tSnow/ice pixels\tPixels with glint risk\tPixels at a
coastline\tLand pixels" ;

cloud_classif_flags:long_name = "" ;

float latitude (tp_y, tp_x) ;

latitude:offset_y = 0.5 ;
latitude:subsampling_x = 16. ;

latitude:subsampling_y = 16. ;
latitude:units = "degree" ;
latitude:standard_name = "latitude" ;

latitude:offset_x = 0.5 ;

float longitude (tp_y, tp_x) ;

longitude:offset_y = 0.5 ;
longitude:subsampling_x = 16. ;
longitude:subsampling y = 16. ;
longitude:units = "degree" ;
longitude:standard_name = "longitude" ;
longitude:offset_x = 0.5 ;

byte cawa_invalid_mask ;

cawa_invalid_mask:description = "Invalid pixels"
cawa_invalid _mask:expression = "cloud classif flags.F_INVALID"
cawa_invalid_mask:color = 178, 0, 0, 255 ;
cawa_invalid mask:transparency = 0.5 ;
cawa_invalid_mask:long_name = "cawa_invalid" ;

byte cawa_cloud_mask ;
cawa_cloud_mask:description = "Pixels which are either cloud_sure
or cloud_ambiguous" ;
cawa_cloud_mask:expression = "cloud_classif_flags.F_CLOUD" ;
cawa_cloud_mask:color = 255, 0, 255, 255 ;
cawa_cloud_mask:transparency = 0.5 ;
cawa_cloud_mask:long_name = "cawa_cloud"

byte cawa_cloud_ambiguous_mask ;

cawa_cloud_ambiguous_mask:description = "Semi transparent clouds,
or clouds where the detection level is uncertain"
cawa_cloud_ambiguous_mask:expression =
"cloud_classif_flags.F_CLOUD_AMBIGUOUS"

cawa_cloud_ambiguous_mask:color = 255, 255, 0, 255 ;
cawa_cloud_ambiguous_mask:transparency = 0.5 ;
cawa_cloud_ambiguous_mask:long_name = "cawa_cloud_ambiguous"

byte cawa_cloud_sure_mask ;

cawa_cloud_sure_mask:description =
"Fully opagque clouds with full confidence of their detection" ;
cawa_cloud_sure_mask:expression = "cloud_classif flags.F_CLOUD_SURE

34

CAWA D-9

Software User Manual

cawa_cloud_sure_mask:color = 255, 0, 0, 255 ;
cawa_cloud_sure_mask:transparency = 0.5 ;
cawa_cloud_sure_mask:long_name = "cawa_cloud_sure" ;

byte cawa_cloud_buffer_mask ;
cawa_cloud_buffer_mask:description = "A buffer of n pixels around
a cloud. n is a user supplied parameter. Applied to pixels masked

as \'cloud\'"

cawa_cloud_buffer_mask:expression =

"cloud_classif_flags

.F_CLOUD_BUFFER"

cawa_cloud_buffer_mask:color = 255, 200, 0, 255 ;
cawa_cloud_buffer_mask:transparency = 0.5 ;

cawa_cloud_buffer ma

sk:long_name = "cawa_cloud_buffer" ;

byte cawa_cloud_shadow_mask ;

cawa_cloud_shadow_ma
cloud shadow" ;
cawa_cloud_shadow_ma
"cloud_classif_flags
cawa_cloud_shadow_ma
cawa_cloud_shadow_ma
cawa_cloud_shadow_ma
byte cawa_snow_ice_mask

cawa_snow_ice_mask:e
cawa_snow_ice_mask:c
cawa_snow_1ice_mask:t
cawa_snow_ice_mask:1
byte cawa_glint_risk_mas
cawa_glint_risk_mask

sk:description = "Pixels is affect by a

sk:expression =
.F_CLOUD_SHADOW" ;
sk:color = 178, 0, 0, 255 ;

sk:transparency = 0.5 ;
sk:long_name = "cawa_cloud_shadow" ;
’
cawa_snow_ice_mask:description = "Snow/ice pixels" ;
xpression = "cloud_classif_flags.F_SNOW_ICE"
olor 0, 255, 255, 255 ;
ransparency = 0.5 ;
ong_name = "cawa_snow_ice"
k ;
:description = "Pixels with glint risk"
texpression = "cloud_classif_flags.F_GLINTRISK

cawa_glint_risk_mask

cawa_glint_risk_mask
cawa_glint_risk_mask
cawa_glint_risk_mask
byte cawa_coastline_mask
cawa_coastline_mask:
cawa_coastline_mask:

cawa_coastline_mask:
cawa_coastline_mask:
cawa_coastline_mask:
byte cawa_land_mask ;
cawa_land_mask:descr
cawa_land_mask:expre
cawa_land_mask:color

:color = 255, 175, 175, 255 ;

:transparency = 0.5 ;
:long_name = "cawa_glint_risk"
7
description = "Pixels at a coastline"
expression = "cloud_classif_flags.F_COASTLINE"

color = 0, 178, 0, 255 ;
transparency = 0.5 ;
long_name = "cawa_coastline" ;

iption = "Land pixels"
ssion = "cloud_classif_flags.F_LAND"
= 0, 255, 0, 255 ;

cawa_land_mask:transparency = 0.5 ;

cawa_land_mask:long_.

// global attributes:
:Conventions = "CF-1
:title = "CAWA TCWV

name "cawa_land"

.4"
product" ;

:product_type = "CAWA TCwv" ;

:start_date = "02-JA
:stop_date = "02-JAN
:TileSize = "64:1121
:metadata_profile =
:metadata_version =
:tiepoint_coordinate

N-2006 14:11:00.727666"
-2006 14:54:39.429106" ;
"beam" ;

"0'5"

s = "longitude latitude" ;

35

CAWA D-9 Software User Manual

Example of CAWA CTP product header:

netcdf L2_of_ L2 _of MER_RR__1PNUPA20050701_072830_000026412038_00350_17438_
—5743 |
dimensions:

y = 15009 ;

X 1121 ;

tp_y = 939 ;

tp.x = 71 ;

variables:
float ctpl(y, x) ;
ctp:units = "hPa"
ctp:_Fillvalue = -999.f ;
ctp:long_name = "Cloud Top Pressure" ;
byte ctp_flags(y, x) ;
ctp_flags:units = "1"
ctp_flags:long_name = "CTP flags band" ;
short cloud_classif_flags(y, x) ;
cloud_classif_flags:units = "1"
cloud_classif_flags:flag_meanings = "F_INVALID F_CLOUD

F_CLOUD_AMBIGUOUS F_CLOUD_SURE F_CLOUD_BUFFER F_CLOUD_SHADOW
F_SNOW_ICE F_GLINTRISK F_COASTLINE F_LAND" ;
cloud_classif_flags:flag_masks = 1ls, 2s, 4s, 8s, l6s, 32s, 64s,
128s, 256s, 512s ;
cloud_classif_ flags:flag_coding name = "cloud classif flags" ;
cloud_classif_flags:flag_descriptions = "Invalid pixels\tPixels
which are either cloud_sure or cloud_ambiguous\tSemi transparent
clouds, or clouds where the detection level is uncertain\tFully
opaque clouds with full confidence of their detection\tA buffer
of n pixels around a cloud. n is a user supplied parameter.
Applied to pixels masked as \'cloud\'\tPixels is affect by a cloud
shadow\tSnow/ice pixels\tPixels with glint risk\tPixels at a
coastline\tLand pixels" ;
cloud_classif_flags:long_name = "" ;

float latitude(tp_y, tp_x) ;
latitude:offset_y = 0.5 ;
latitude:subsampling x = 16. ;
latitude:subsampling_y = 16. ;
latitude:units = "degree" ;
latitude:standard_name = "latitude" ;
latitude:offset_x = 0.5 ;

float longitude(tp_y, tp_x) ;
longitude:offset_y = 0.5 ;
longitude:subsampling x = 16. ;

longitude:subsampling y = 16. ;
longitude:units = "degree" ;
longitude:standard_name = "longitude" ;
longitude:offset_x = 0.5 ;

byte cawa_invalid_mask ;
cawa_invalid_mask:description = "Invalid pixels"
cawa_invalid mask:expression = "cloud_classif flags.F_INVALID" ;
cawa_invalid_mask:color = 178, 0, 0, 255 ;
cawa_invalid_mask:transparency = 0.5 ;
cawa_invalid_mask:long_name = "cawa_invalid" ;

byte cawa_cloud_mask ;

36

CAWA D-9

Software User Manual

cawa_cloud_mask:description = "Pixels which are either cloud_sure

or cloud_ambiguous" ;

cawa_cloud_mask:expression = "cloud_classif_flags.F_CLOUD" ;
cawa_cloud_mask:color = 255, 0, 255, 255 ;
cawa_cloud_mask:transparency = 0.5 ;

cawa_cloud_mask:long_name =
byte cawa_cloud_ambiguous_mask ;
cawa_cloud_ambiguous_mask:description = "Semi transparent clouds,
or clouds where the detection level is uncertain"
cawa_cloud_ambiguous_mask:expression
"cloud_classif_flags.F_CLOUD_AMBIGUOUS"
cawa_cloud_ambiguous_mask:color 255, 255,
cawa_cloud_ambiguous_mask:transparency 0.5
cawa_cloud_ambiguous_mask:long_name = "cawa_cloud_ambiguous"
byte cawa_cloud_sure_mask ;
cawa_cloud_sure_mask:description = "Fully opaque clouds with full
confidence of their detection"
cawa_cloud_sure_mask:expression
cloud_classif_flags.F_CLOUD_SURE"
cawa_cloud_sure_mask:color 255,
cawa_cloud_sure_mask:transparency
cawa_cloud_sure_mask:long_name =
byte cawa_cloud_buffer_mask ;
cawa_cloud_buffer_mask:description = "A buffer of n pixels around
a cloud. n is a user supplied parameter. Applied to pixels masked
as \'cloud\'"
cawa_cloud_buffer_mask:expression
"cloud_classif_flags.F_CLOUD_BUFFER"
cawa_cloud_buffer_mask:color 255, 200,
cawa_cloud_buffer_mask:transparency 0.5
cawa_cloud_buffer_mask:long_name = "cawa_cloud_buffer"
byte cawa_cloud_shadow_mask ;
cawa_cloud_shadow_mask:description
cloud shadow" ;
cawa_cloud_shadow_mask:expression
"cloud_classif_flags.F_CLOUD_SHADOW"
cawa_cloud_shadow_mask:color 178, 0,
cawa_cloud_shadow_mask:transparency 0.5
cawa_cloud_shadow_mask:long_name = "cawa_cloud_shadow"

"cawa_cloud"

255

0,

4

4

’
n

= 0, 0, 255 ;
0.5 ;

"cawa_cloud_sure"

0, 255

4

14

"Pixels is affect by a

255

4

0,

4

byte cawa_snow_ice_mask ;

description "Snow/ice pixels"

expression = "cloud_classif flags.F_SNOW_ICE"

color = 0, 255, 255, 255

transparency 0.5
cawa_snow_ice_mask:long_name = "cawa_snow_ice"

byte cawa_glint_risk_mask ;

cawa_snow_1ice_mask:
cawa_snow_ice_mask:
cawa_snow_ice_mask:
cawa_snow_ice_mask:

4

4

14

4

cawa_glint_risk mask:description = "Pixels with glint risk"
cawa_glint_risk_mask:expression =
"cloud_classif_flags.F_GLINTRISK"
cawa_glint_risk_mask:color = 255, 175, 175, 255 ;
cawa_glint_risk_mask:transparency = 0.5 ;
cawa_glint_risk _mask:long_name = "cawa_glint_risk"

byte cawa_coastline_mask ;
cawa_coastline_mask:description = "Pixels at a coastline"

cawa_coastline_mask:expression

"cloud_classif_flags

cawa_coastline_mask:color =

.F_COASTLINE"

0, 178, 0, 255

4

37

CAWA D-9

Software User Manual

cawa_coastline_mask:transparency = 0.5 ;
cawa_coastline_mask:long_name = "cawa_coastline"
byte cawa_land_mask ;

cawa_land_mask:
cawa_land_mask:
cawa_land_mask:
cawa_land_mask:
cawa_land_mask:

// global attributes:
:Conventions =
:title = "CAWA

description = "Land pixels"

14

expression = "cloud_classif flags.F_LAND" ;

color = 0, 255, 0, 255 ;
transparency = 0.5 ;
long_name = "cawa_land"

"CE-1.4"
product"

:product_type = "CAWA CTP"

:start_date =

"01-JUL-2005 07:28:30.062937"

:stop_date = "01-JUL-2005 08:12:31.290841" ;
:TileSize = "64:1121"

:metadata_profile = "beam" ;

:metadata_version = "0.5"
:tiepoint_coordinates = "longitude latitude" ;

38

CAWA D-9 Software User Manual

List of Figures

1 Processing flow of the SNAP TCWYV processor. 11
2 Processing flow of the SNAP CTP processor. 12
3 GPF information for Idepix MODIS operator.. 22
4 GPF information for TCWV MERIS operator. 24
5 GPF information for TCWV MODIS operator. 25
6 GPF information for TCWV MERIS operator. 26
7 The SNAP desktop application splash screen. 27

39

CAWA D-9 Software User Manual

List of Tables

1 MERIS bandsin L1bproduct 13
2 MERIS instrument channels. L 0 13
3 MERIS tie point gridsin L1bproduct. 14
4 MERIS Libflagcoding. e 14
5 MODIS Aqua bands in L1b MYDO021 product. Taken from [14]. 15
6 MODIS tie point grids in L1b MYDO21 product. 15
7 Bands in ERA-Interim producto 16
8 IdePix classification flagcoding. L 17
9 Bands in final CAWA TCWYV product, 17
10 BandsinfinaAl CAWA CTPproduct 18
11 Processing parameters deviating from defaults for CAWA IdePix classification step. . . . 21

40

	Introduction
	Project background
	Purpose and Scope
	References
	Acronyms and Abbreviations

	The SNAP Cawa TCWV and CTP Processing System
	Overview
	Theoretical Background
	Processing Environment
	Processor Components
	The Sentinel Application Platform (SNAP)
	The SNAP Graph Processing Framework
	The SNAP-Python Interface (SNAPPY)
	The SNAP-NetCDF Module
	The IdePix Pixel Classification Module
	The TCWV GPF Processor
	The CTP GPF Processor
	FORTRAN shared libraries
	Lookup Tables

	Processing Flow
	TCWV Processor
	CTP Processor

	The SNAP CAWA Products
	Overview
	Input Products
	MERIS L1b TOA Radiance Products
	MODIS MYD021 TOA Reflectance Products

	Intermediate Products
	ERA-Interim Products (optional)
	SNAP IdePix Classification Products

	Final Products
	CAWA TCWV Products
	CAWA CTP Products

	Processing Software Installation
	Overview
	Usage Requirements
	General Requirements
	Operating System
	Hardware Requirements

	Contents of the Processing Software Bundle
	How to get the Software
	Installation Steps
	Installation of the SNAP Software
	Installation of the Python Software
	Python Configuration
	Installation of the CAWA Processor modules

	How to run the CAWA Processing Software
	Test of the Installation
	The Pixel Classification Step
	Processing Parameters

	TCWV Processing
	Processing Parameters

	CTP Processing
	Processing Parameters

	Data Analysis Tools
	SNAP Desktop Application

	Annex

